Модульный контактор (КМ)
Модульный контактор дает возможность дистанционно управлять электроустановками и оборудованием. Он имеет компактные размеры, отлично сочетается с другими модульными устройствами. Например, однофазный контактор легко установить на ДИН-рейку в электрическом щитке. Во время работы отсутствует вибрация и шум, поэтому такие контакторы применяются не только на производстве, но и в жилых и общественных зданиях.
Что такое модульный контактор и для чего он нужен
По своему функциональному назначению контактор модульный КМ относится к коммутационной аппаратуре дистанционного управления мощными нагрузками, работающими при постоянном или переменном токе. Они выполняют разрыв токовых цепей сразу в нескольких местах, и этим отличаются от электромагнитных реле, разрывающих цепь лишь в одной точке.
Довольно часто модульные контакторы работают совместно со вспомогательными устройствами – приставками, тепловыми реле, средствами блокировки и другими приборами модульного типа. В результате таких сочетаний получается аппаратура, обладающая особыми свойствами и способная выполнять заданные функции. Так, при установке модуля задержки, получается контактор с функцией задержки, а тепловое реле перегрузки переводит контактор в категорию магнитного пускателя.
С помощью вспомогательных элементов существенно расширяются возможности основных приборов, улучшаются их эксплуатационные характеристики, упрощается монтаж.
По своей сути контакторные устройства считаются модифицированными разновидностями пускателя, в котором дополнительно присутствуют тепловое реле и контактная группа для запуска электродвигателя. Электромагнитные пускатели низкого напряжения реверсивными и нереверсивными. Первый вариант включает в себя два одинаковых контактора, с одним и тем же номинальным током. В нем установлена блокировка механического или электрического типа, предотвращающая одновременное замыкание главных контактов.
Защитные функции в этих приборах выполняют электротепловые токовые реле и другие аналогичные устройства. Электрический контактор малой мощности, используется в качестве промежуточного реле. Он предназначен для слаботочных цепей и отличается большим числом коммутаций. С помощью этого прибора удается подключить множество дополнительных участков и контролировать их включение-выключение.
Конструкция и принцип действия
Стандартная конструкция контактора включает в себя несколько основных деталей. Прибор состоит из корпуса (1), выводной клеммы катушки управления (2), клеммы силового контакта (3), неподвижного магнитопровода (4), подвижной части – сердечника (5), катушки управления (6), короткозамкнутого кольца магнитопровода (7), неподвижного и подвижного контактов (8 и 9), индикаторного рычага включения-выключения (10).
Катушка является основным элементом, создающим магнитный ток. Если она используется еще и в качестве дросселя, то с ее помощью возникает движущая сила, обеспечивающая работу приборов. Натяжение контактов фиксируется при помощи контактной пружины. Во время стыковки подвижный и неподвижный контакты соединяются между собой. Они постоянно находятся в движении и совершают определенные действия. Неподвижные контакты закрепляются на корпусе, а подвижные соединяются с сердечником.
Работа контактора происходит следующим образом:
- После подачи напряжения на управляющую катушку, происходит притягивание якоря к сердечнику. В результате, наступает замыкание или размыкание контактной группы, в соответствии с исходным положением того или иного контакта.
- После отключения питания все действия происходят в обратном порядке. Электрическая дуга, возникающая в момент размыкания, гасится при помощи дугогасительной системы.
- После прекращения подачи напряжения, электромагнитное поле исчезает и перестает удерживать якорь или сердечник.
- Возвратная пружина переводит контакты в исходное положение, полностью размыкая цепь. Таким образом, модульный контактор выполняет свою основную работу в периоды подачи и отключения напряжения.
Классификация контакторных устройств
Существуют различные типы контакторов, отличающихся друг от друга по различным показателям. Среди них можно выделить следующие параметры.
В первую очередь, они классифицируются по назначению. Сюда входят следующие виды и категории:
- Приборы для дистанционной коммутации. Большинство из них работает под ручным управлением оператора, используя кнопки или выключатели. В нужное время подается сигнал, и устройство приводится в действие. В другом способе несколько контакторов соединяются в общую автоматизированную систему питания, в которой для подачи команд используется электронная схема. На случай аварийной ситуации предусмотрена система защиты, размыкающая контакты.
- Включение мощного электрооборудования при помощи слаботочных линий. Возникает вопрос, для чего нужен контактор в таких случаях? Не лучше ли воспользоваться традиционной кнопкой? Это, конечно, можно сделать, но тогда понадобится очень массивная и громоздкая аппаратура, а сам процесс включения потребует значительных усилий. То же самое касается и выключения. Поэтому для этих целей используются компактные слаботочные устройства, позволяющие с высокой частотой выполнять циклы включения-выключения. Таким образом, слабый ток подается на катушку, а уже потом осуществляется запуск мощного электродвигателя.
Каждый контактор модульный разделяется по типу привода его в действие. В этом случае также можно отметить различные варианты:
- Электромагнитный привод считается основным, именно он заложен в принципе действия большинства устройств. При подаче напряжения происходит включение, а при отсутствии напряжения прибор отключается. После полного отключения, включение нужно выполнять повторно, что обеспечивает дополнительную безопасность при работе с электроустановками.
- Контактная группа может быть приведена в движение с помощью пневматических устройств. Такая система, предназначенная для коммутации, не требует электромагнитного привода. Управляющая команда подается импульсом высокого давления. Подобные системы применяются для локомотивов железных дорог, и других установках с пневматикой.
Любой контактор модульный КМ в зависимости от модификации, может быть смонтирован разными способами:
- Специализированные устройства, в том числе и без корпусов, не имеют каких-либо дизайнерских ограничений и устанавливаются исключительно с позиций нормальной функциональности и безопасной эксплуатации.
- Существуют конструкции, создаваемые в индивидуальном порядке под конкретную электроустановку. Они не подходят для бытовых условий, поскольку размещаются в специально отведенных местах.
- При стандартном монтаже модульный контактор и его подключение осуществляются на ДИН-рейку в щитке, вместе с другими устройствами.
Существуют различия и в соответствии с номинальным напряжением основной цепи. В этом случае контактор КМ может входить в группу устройств, работающих с напряжением 220 и 440 вольт или в группу с напряжением 380 и 660 В. Прибор, бывает однополюсный, а также двухполюсный и с большим количеством полюсов – до 5 единиц.
Схемы подключения потребителей и модульных контакторов
В соответствии с типом используемого электрооборудования, в каждом случае предусмотрена индивидуальная схема подключения модульного контактора. Наибольшее распространение получил стандартный вариант, где используется всего один прибор, а также схемы – реверсивная и с подключением однофазных потребителей. Каждую из них следует рассмотреть подробнее.
Самая популярная схема – подключение трехфазного электродвигателя через контактор модульный КМ (рис. 1). Для управления используются обычные кнопки ПУСК и СТОП. Защита от перегрузок осуществляется с помощью теплового реле. На случай коротких замыканий электрическая цепь оборудуется автоматическим выключателем.
Другая схема – реверсивная (рис. 2), используется при подключение модульного контактора к электродвигателю, чтобы появилась функция реверса. Она постоянно необходима в различных подъемных механизмах, станках и другом оборудовании. В этом случае выполняется подсоединение еще одного коммутирующего устройства. Оно участвует в изменении мест двух фаз, что приводит и к изменению направления вращения вала. Данная схема также дополнена защитными средствами – тепловым реле и автоматическим выключателем.
Основное назначение контакторов в третьей схеме, заключается в работе с однофазными потребителями. Как правило, это системы освещения, электрические насосы и другое оборудование, функционирующее с одной фазой.
Технические характеристики
Основные параметры и технические характеристики наносятся на корпус прибора, в том числе и контактора АВВ. Прежде всего, это величина номинального тока, тип и количество контактов. На каждой модели и модификации присутствуют собственные показатели.
Чаще всего коммутационные приборы, работающие с различным электрооборудованием, обладают следующими характеристиками:
- Величина номинального рабочего напряжения переменного тока, составляющая 230, 400 и 600 вольт.
- Значение номинального рабочего тока, с категорией использования АС-3 – 12 А.
- Показатели условного теплового тока с категорией использования АС-1 – 25 А.
- Номинальная мощность при коммутации для напряжения 230 В по категории АС-3 – 3 кВт.
- Номинальная мощность при коммутации для напряжения 400 В по категории АС-3 – 5,5 кВт.
- Номинальная мощность при коммутации для напряжения 660 В по категории АС-3 – 7,5 кВт.
Отдельно следует отметить характеристики управляющих цепей в самом контакторе:
- Величина номинального напряжения в управляющих катушках составляет 24, 36, 110, 230 и 400 вольт.
- При срабатывании катушка потребляет мощность в размере 60 ВА.
- В положении удержания катушка потребляет мощность, величиной 7 ВА.
- Контакты замыкаются в течение 12-22 миллисекунд.
- Размыкание контактов происходит в течение 4-16 мс.
- Катушка управления обладает мощностью рассеяния – 3 Вт.
Благодаря этим показателям данные приборы широко используются в электрике, промышленности и других областях.
Как подключить контактор?
Контакторы относятся к коммутационному оборудованию для управления в основном трехфазными двигателями. У контакторов главная задача — это включение, выключение и реверс на расстоянии, которое определяется конкретным расположением движков. Но двигатели — это не единственные потребители электроэнергии, с которыми контакторы могут использоваться. Любые другие виды нагрузок можно так же дистанционно коммутировать этими коммутаторами. В принципе, они являются конструктивной разновидностью магнитного пускателя.
Принципиальное устройство
Контактор состоит из нескольких узлов:
- Энергетического.
- Силового.
- Коммутационного.
Энергетический узел обеспечивает формирование электромагнитного поля, достаточного для получения определенной однонаправленной силы. Это поле появляется как следствие протекания электрического тока через катушку с сердечником. Его форма делается либо П-, либо Ш-образной, в зависимости от конструкции этого коммутационного изделия.
Силовые линии магнитного поля наиболее сконцентрированы вблизи сердечника, и поэтому силовой узел выполнен так, чтобы воздействие на него со стороны энергетического узла получилось максимальным. Для более равномерного усилия, возникающего при протекании через катушку переменного тока, в ней делается короткозамкнутый виток. Он играет роль демпфера, который препятствует дребезгу контактов с частотой 50 Гц. Если катушка питается постоянным током, на ее сердечнике располагается диэлектрическая прокладка для предотвращения слипания намагнитившихся деталей.
Силовой узел содержит подвижный подпружиненный ферромагнитный элемент — якорь, который притягивается к неподвижному сердечнику катушки, передавая силу коммутационному узлу. В нем расположены контакты. Их число может быть различным, в зависимости от конструкции контактора. Для управления электродвигателями в трехфазных сетях контактов бывает три-четыре — одинаковых по своим характеристикам. Но могут быть и дополнительные маломощные контакты, используемые для управления вспомогательными элементами схемы.
- Расположение дополнительных контактов определяют отличие контактора от магнитного пускателя. Они располагаются в группе с основными контактами, а не сбоку, как в магнитном пускателе.
Кроме контактов в коммутационном блоке расположены камеры для гашения электрической дуги.
Как работает
Пружина силового узла удерживает контакты в разомкнутом состоянии. Когда усилия со стороны якоря становится достаточно для преодоления упругих сил пружины, силовой и коммутационный узлы приходят в движение. Якорь деформирует пружину, одновременно увлекая за собой контакты, — происходит их замыкание. Якорь соприкасается с сердечником катушки и удерживается ее электромагнитным полем. После обесточивания катушки пружина возвращается в исходное состояние вместе с якорем и контактами.
Для нормальной работы контактора на клеммы его катушки подается напряжение строго определенной величины. Для контакторов, используемых в электросетях, это 220 и 380 В. Поэтому надо правильно сделать присоединение катушки к трехфазной сети. Если номинальное напряжение контактора — 220 В, катушка присоединяется к любой из фаз (к фазному напряжению). А если 380 В — между любыми двумя фазами (к линейному напряжению).
Для управления контактором применяется кнопочная станция. Она состоит из двух кнопок:
- нормально разомкнутой для включения;
- нормально замкнутой для выключения.
Схема подключения контактора объединяет дополнительный контакт и кнопочную станцию. Кнопка, предназначенная для включения, и дополнительный контакт соединяются параллельно, и через них напряжение подается на катушку. Нажатие на кнопку включения замыкает цепь катушки. Якорь приходит в движение и замыкает все контакты. Дополнительный контакт делает ненужной для питания катушки кнопку включения. Поэтому после срабатывания контактора ее можно отпустить.
Состояние контактора при этом не изменится. Он останется во включенном состоянии. Но контакты кнопки выключения замкнуты до тех пор, пока кнопка не нажата. Нажимаем на нее — цепь питания катушки разрывается. Магнитное поле исчезает, и контакты под воздействием пружины контактора размыкаются. Цепь питания катушки разрывается еще и по дополнительному контакту. Поэтому кнопку выключения можно отпустить, и это никак не повлияет на состояние контактора.
Особенности схем
Из иллюстраций, на которых показано, как устроен контактор, очевидно, что в нем нет какой-либо защиты. Но эксплуатировать схемы, в которых нет хотя бы плавких предохранителей, недопустимо. Особенно при наличии несварных и неспаянных соединений проводов и кабелей. В соединениях, выполненных с использованием метизов, при ослаблении прилегания контактов лавинообразно увеличивается переходное сопротивление. И, как следствие этого, нагрев токопроводящей жилы, расплавление изоляции, короткое замыкание и, возможно, воспламенение чего-либо.
Подобное ухудшение контакта может быть в любом электротехническом изделии, в котором провод прижимается винтом. Если этим изделием будет автоматический выключатель, в котором имеется тепловая защита, он отключится из-за нагревания корпуса. Однако контактор или магнитный пускатель такой защиты не имеют. Поэтому регулярный периодический осмотр и плавкие предохранители — единственная мера противодействия таким неисправностям.
Схема с контакторами (магнитными пускателями) всегда дополняется защитными элементами. В электроприводах, в которых эти коммутаторы находят самое широкое применение, такими элементами являются тепловые реле. Пример схемы электропривода с использованием контактора и тепловых реле показан далее.
1 — автоматический выключатель;
2 — кнопочная станция (альтернативное название «кнопочный пост»);
3 — дополнительные контакты (в данной схеме — магнитного пускателя);
4 — основные контакты (в данной схеме — магнитного пускателя);
5 — катушка магнитного пускателя;
6 — элементы термореле;
7 — трехфазный двигатель.
Дополнительные сведения
Принципиальной разницы между контактором и магнитным пускателем нет, и об этом уже было сказано выше. Их задача тоже одинаковая — дистанционное включение и выключение нагрузки. Схемы, в которых применяются эти разновидности коммутаторов, также идентичны. При описании схем используются некоторые специфические термины. Остановимся на них далее для полноты информации.
«Самоподхват». Это значит, что кнопка включения в кнопочной станции соединена параллельно с контактом, замыкающимся от действия катушки, питание которой начинается немедленно при нажатии на упомянутую кнопку. Самоподхват хотя и не упоминался ранее, но он присутствует в каждой из схем, показанных выше.
«Реверс». Схема с реверсом предусматривает получение из двух контакторов или магнитных пускателей переключение обмоток двигателя для изменения вращения его ротора на противоположное. Пример такой схемы приведен ниже.
Как правильно подключить контактор?
Контактор используется для дистанционного управления электродвигателями и другими электротехническими устройствами (кондиционер, насос, электропечка и так далее). Этот прибор относится к коммутационному оборудованию. В принципе, для опытного электрика подключение особых трудностей не вызовет. А вот новичкам придется сложно, поскольку нужно, как минимум, знать базовые принципы монтажа.
Основные моменты.
Прежде чем приступать к подключению, нужно выяснить, а что собой представляет устройство. Состоит оно из следующих элементов:
– главные контакты;
– электромагнитная система;
– дугогасительные элементы;
– дополнительные контакты.
Главные контакты – основа работы контактора. Они отвечают за замыкание и размыкание цепи, позволяют при большой частоте производить частые включения и отключения, а также проводят номинальный ток длительный период времени. Следите за положением контактов. Они не должны соприкасаться с механическими защелками и втягивающей катушкой.
Благодаря электромагнитной системе, происходит дистанционное управление. В ее основе: катушка, якорь, сердечник и крепежные детали. Системы могут быть различной конструкции, в зависимости от кинематической схемы контактора, рода тока или цепи.
Дугогасительные элементы обеспечивают при размыкании контактов гашение электрической дуги. Существует несколько способов это осуществить, и зависят они от режимов работы прибора.
Дополнительные контакты работают в цепях управления, где производят переключение. Они могут длительное время проводить ток, но не более 20 ампер, а отключить его могут при показателе 5 ампер.
Принципы монтажа.
Сразу обозначим, что схема управления включает множество элементов и устройств, она не ограничивается контактором. Обязательно нужен автоматический выключатель с соответствующим номиналом, который зависит от предельного тока пускателя. Обратите внимание и на токо-временную характеристику. Ее выбирают в зависимости от устойчивости прибора к индуктивным нагрузкам.
Заранее продумайте, где будет установлено устройство. Если контактор магнитный, он охлаждается автоматически. Поэтому для него нужно выбрать место с достаточным внутренним пространством или вентиляционными отверстиями. Помните, что прибор прикрепляется к основанию, для которого главное условие – отсутствие вибраций. Иначе может произойти случайный отброс втягивающего штока и, соответственно, размыкание цепи.
И конечно, контактор должен быть изолирован от внешней среды. Попадание вовнутрь влаги или пыли обязательно приведет к поломке. Но тут все зависит от класса защиты, некоторые устройства отлично переносят вышеперечисленное. Внимательно прочитайте правила эксплуатации и создайте соответствующие условия.
Коммутируемая нагрузка.
Для подключения силовых цепей лучше использовать винтовые зажимы (с седлом или прижимной планкой). Но прежде цепи необходимо собрать. Во время этого процесса профессионалы рекомендуют обеспечить максимальную площадь для соприкосновения контактной площадки и кабельных жил. Для многопроволочных жил берите штыревой наконечник, он поможет хорошо их обжать. А однопроволочные сворачивайте в кольцо.
Главные контакты делятся на пару подвижных и неподвижных. Они представлены на каждом полюсе и соединены токопроводящей пластиной. Располагаются параллельно друг к другу. На лицевой части корпуса находятся прижимные винты. Для подключения необходимо ввести наконечник жилы в седло или прижимную планку (до самого основания), а затем хорошо зажать винтом. Через двое суток выполните перетяжку (чтобы устранить остаточную деформацию металла).
Направляющие цепи.
При включении положение контактора остается без механической фиксации. Чтобы поддерживать шток в процессе работы, нужно создать систему самоподхвата. Для этого понадобится блокировочный, полностью открытый контакт (используется в качестве дополнительного). Через него подключаем цепь питания катушки к пусковой кнопке. Затем параллельно соединяем второй контур. В его основе – соединенные блокировочные контакты и один замкнутый контакт кнопки “Стоп”. В итоге, когда включается контактор, блокирующий контакт замыкается на все время работы и подает ток в катушку. Если нужно разомкнуть цепь, достаточно просто нажать на “стоп”.
В эту схему могут включаться и другие составляющие, например защитные приборы, различные датчики, концевые выключатели. Но само подключение в разы усложняется, поэтому новичкам лучше воспользоваться самым простым методом.
Дополнительные модули.
Они расширяют возможности контактора за пределы коммутационных и обеспечивают пользователю и прибору дополнительную защиту. К таким можно отнести блокирующие контакты. Когда они изначально включены в конструкцию прибора, осуществить схему самоподхвата куда проще. А также их можно использовать для создания более сложной автоматизации и индикации.
Хорошо, если устройство включает в себя тепловые расцепители. Они контролируют нагрузку внутри цепи и в случае превышений допустимых значений тока выключают прибор. Реле времени также являются неплохим дополнением. С их помощью можно реализовать замедленный пуск или остановку электропривода.
Для удобства продают пусковые приставки, которые уже оснащены схемой самоподхвата и кнопками “пуск” и “стоп”. Но использовать их можно, только если управление осуществляется со щитка или шкафа. Иногда катушка может не подходить для напряжения управляющей цепи, но ее можно заменить на соответствующую.
Схемы подключения.
А теперь перейдем к главному вопросу. Схем всего три, у каждой свои особенности, преимущества и недостатки. Самая первая – прямая коммутация фаз. Она же и самая простая. В данном случае контактор используется для дистанционного включения и отключения. Как подключить главные контакты уже описано выше.
Для трехфазных асинхронных машин нужна схема сложнее. Для управления их прямым и обратным вращением нужно установить в паре два контактора. Отходящие провода фаз соединяются с помощью параллельного подключения. Обратите внимание, что провода, близкие к подаче питания, соединяются перекрестной перемычкой, которая должна менять последовательность любых двух-трех фаз. При этом способе важно защитить прибор от встречного включения. Защита должна быть двухсторонней. Используется и механическая блокировка, и блокировочные контакты.
Если у асинхронного мотора высокая мощность, нужно создать пусковую схему. И для этого вновь понадобятся два контактора. Один из них будет пусковым. Используя схему соединения обмоток, двигатель подключается в “звезду”. Это позволяет снизить пусковые токи. Через время мотор выходит на номинальные обороты и присоединяется второй контактор. В данном случае обмотки соединяются в “треугольник”. Но для этой схемы обязательно наличие реле задержки (устанавливается на основном приборе), нулевой проводник и прокладка к двигателю.