Обзор ограничителя импульсных напряжений ОИН-1
Назначение и принцип работы
Ограничитель импульсных напряжений ОИН-1 нужен для защиты электросетей напряжением 380/220В. Это стандартные напряжения для питания электросетей. Импульсные скачки напряжения могут возникнуть в результате ударов молнии. Из-за них же и возникает разность потенциалов в земле. Кроме них выделяют коммутационные всплески в сети. Они возникают при включении или отключении мощных электроприборов или групповом старте потребителей в электроустановке. Коммутационные импульсы могут возникать при пуске мощных электрических двигателей или групповом пуске насосных станций, а также при включении конденсаторных установок.
Как работает ограничитель? Внутри ОИН-1 установлены варисторы. По принципу действия варисторы напоминают разрядники, которые использовались ранее. Поэтому ограничитель устанавливается параллельно защищаемой цепи. В случае, если напряжение в сети превысит допустимое (классификационное) напряжение варистора, он начинает замыкать провода, таким образом отводя опасность от подключенных после него электроприборов.
Область применения
Рассмотрим, где применяется на практике ОИН-1. Применение в реальной работе ограничителя импульсных напряжений достаточно широко. Его устанавливают во вводные щиты или щиты учёта потребителей. При этом его рекомендуется устанавливать до счётчика, чтобы защитить и его. О том, как правильно подключать ОИН-1 в щиток мы поговорим ниже.
Если вы собираетесь строить дом и подключаете участок к электроэнергии – в технических условиях на подключение будет указана необходимость установки устройства защиты от импульсных перенапряжений. Но такое требование вносится в большинстве случаев как прописано в ПУЭ – при воздушном вводе кабеля.
Официальная документация о применении ограничителя импульсных напряжений от компании «Энергомера» ссылается на то, что рекомендуется его применение в системах заземления TN-S, TN-C-S в однофазной и трёхфазной сети.
Технические характеристики
Ни одно описание устройств не обходится без информации о технических характеристиках. ОИН-1 имеет такие характеристики:
- Длительно выдерживает напряжение до 275В, при стандартной частоте в 50 Гц.
- Устанавливается на дин-рейку.
- Ширина 17,5мм, что совпадает с размерами однополюсного автомата.
- Во время работы потребляет ток 0,7 мА, при 275В.
- Соответствует ГОСТам и прошёл сертификацию, поэтому может выдерживать импульсы до 10 кВ, с Iкз=5000А.
- Есть версия ОИН-1С, оборудованная световым индикатором наличия напряжения в сети.
- Клеммники позволяют подключать токопроводящие жилы от 4 до 16 мм.
Как подключить ОИН-1 в щитке
У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:
Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге.
Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть.
На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.
Монтажная схема на примере подключения в двухпроводной электросети:
И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:
Важное примечание
Мы рассмотрели для чего нужен ОИН-1 и как его установить. Но в обязательном порядке нужно добавить примечание из официальной документации:
Речь идёт о подключении автомата в разрыв питающего провода перед ограничителем. Это нужно для того, чтобы в случае короткого замыкания в ограничителе импульсов разорвать цепи и предотвратить негативные последствия случая.
Напоследок рекомендуем просмотреть видео, на котором доступно объясняется, как подключить ограничитель импульсных напряжений к сети:
На этом мы и заканчиваем описание характеристик и правил подключения ОИН-1. Надеемся, подготовленный обзор был для вас полезным и интересным!
Наверняка вы не знаете:
УЗИП, ОИН, ОПС-1, в щите учета подключение (схема) и необходимость установки.
УЗИП, ОИН, ОПС-1, в щите учета подключение (схема) и необходимость установки.
Одними из устройств из серии “быть или не быть?”…ему в щите учета – являются ограничители импульсных перенапряжений ⚡⚡⚡ Они еще называются УЗИП, ОИН, ОПС-1 … и т.п. Существует их бесчисленное множество, бывают они различных классов, бывают разных производителей. Ставить или не ставить, схема подключения такого устройства все это мы затронем в данной статье!
Сначала я расскажу о тех ограничителях перенапряжений, которые я использую для установки в щиты учета моих заказчиков. Свой выбор я остановил на устройстве под названием ОИН-1 от концерна АО “Энергомера”.
Основным критерием выбора данного ограничителя для меня являлось наличие на складе поставщика и цена, последний критерий имеет бОльшее значение, т.к. на мой взгляд необходимость установки таких изделий крайне мала, но об этом немного позднее. Для сравнения комплект ограничителей ОИН-1 АО “Энергомера” на три фазы стоит около 900 рублей, ближайший “конкурент” это ОПС-1 3Р D от ИЭК стоит в районе 3500. Функции выполняемые данными ограничителями абсолютно одинаковые, а если нет разницы зачем Вам платить больше?!
Что же касается схемы подключения УЗИП, ОИН, ОПС и прочих аналогичных устройств. В щите учета подключаются они с нижних клемм вводного автомата, а вывод и ограничителя идет на шину ГЗШ, в нашем случае это проходной блок.
Схема подключения ограничителя импульсных перенапряжений с нижних клемм вводного автомата с помощью наконечников НШВИ-2
Далее подключаем к верхним клеммам самого ограничителя
Далее я решил все собрать в один проводник и подключить к проходному блоку. Можно в отдельности подключить каждый проводник к ГЗШ.
В качестве ГЗШ в нашем щите учета идет проходной блок. Данный проходной блок повторно заземляется с помощью проводника заземления.
Так как ограничитель находится в схеме подключения до счетчика то он должен быть опломбирован. В нашем случае с помощью пластикового бокса.
Схема подключения ограничителей перенапряжения УЗИП,ОПС-1, ОИН и прочих идентична и для других производителей. Отличие возможно лишь в том, что если берете трехполюсный ограничитель то у него выводной проводник уже собран из трех в один.
По опыту работы могу сказать, что не во всех сетевых организациях в технических условиях для заявителей существует такое требование об установке импульсных ограничителей. Мне такое требование встречалось в Нижегородской области и в Краснодарском крае.
Давайте сначала затронем практическую часть вопроса. Чтобы понимать ставить или не ставить нужно понимать, что может быть источником такого перенапряжения, а их всего два:
1.удар молнии, как прямой так и в непосредственной близости
Чтобы понимать ставить или нет ограничитель для защиты от импульсных(грозовых) перенапряжений нужно знать каким проводом выполнена магистраль, к которой наш щит учета будет подключен. Если магистраль выполнена голым проводом вероятность попадания молнии есть, если самонесущим изолированным (СИП), – вероятность попадания молнии крайне мала.Кроме того, нужно иметь ввиду в каком регионе у нас будет установка нашего щита учета. Ниже карта с числом грозовых часов в году:
Как мы видим на данной карте на севере страны очень маленькое число грозовых часов и ограничитель в нашем щите учета просто займет место и не будет выполнять полезных функций. Чем южнее, тем число грозовых часов в году больше и вероятность возникновения первого источника перенапряжения выше.
Что касается коммутационных перенапряжений. Данные перенапряжения возникают при оперативных переключениях на подстанциях. Чем мы ближе находимся от нашей подстанции, тем выше вероятность коммутационного перенапряжения.
Для себя я сделал выбор не в пользу установки ограничителей импульсных перенапряжений, так как моя магистральная линия выполнена проводом СИП, и участок находится на краю деревни где нет крупных подстанций и число грозовых часов в нашем регионе небольшое.
Как мы видим на общем виде щита учета, из-за установки ограничителя у нас не хватило места для установки розетки и автомата для розетки. Можно конечно купить корпус с бОльшими размерами, но опять же это будет стоить для нас дороже. И на мой взгляд розетка с автоматом в щите учета куда полезнее нежели ограничитель импульсных перенапряжений.
Давайте теперь рассмотрим юридическую сторону вопроса. Сразу хочется оговориться, что у меня нет юридического образования и это исключительно мои мысли, которые возникли изучая нормативные документы.
Действительно в ПУЭ есть пункт 7.1.22 где сказано что должны устанавливаться ограничители перенапряжения при воздушном вводе, но в пункте 7.1 сказано, что глава 7 распространяется на – ” жилых зданий, перечисленных в СНиП 2.08.01-89 “Жилые здания”(этот СНИП распространяется на проектирование жилых зданий (квартирных домов, включая квартирные дома для престарелых и семей с инвалидами, передвигающимися на креслах-колясках, в дальнейшем тексте – семей с инвалидами, а также общежитий), высотой до 25 этажей включительно.); общественных зданий, перечисленных в СНиП 2.08.02-89 “Общественные здания и сооружения” (за исключением зданий и помещений, перечисленных в гл. 7.2)( данный СНИП распространяется на проектирование общественных зданий (высотой до 16 этажей включ.) и сооружений, а также помещений общественного назначения, встроенных в жилые здания. При проектировании помещений общественного назначения, встроенных в жилые здания и встроенно-пристроенных к ним, следует дополнительно руководствоваться СНиП 31-01-2003.); административных и бытовых зданий, перечисленных в СНиП 2.09.04-87“( данный СНИП распространяется на проектирование административных и бытовых зданий 1 высотой (по СНиП 21-01-97) до 50 м, включая мансардный этаж, и помещений предприятий.). Все эти СНИПы относятся к многоквартирным домам, административным зданиям, общественным и тп зданиям. Т.е. в пункте 7.1 не указано, что пункт 7.1.22 распространяет свое действие на индивидуальные жилые дома.
Кроме того, в соответствии с Постановлением Правительства РФ от 27.12.2004 N 861 (ред. от 28.07.2017)
25(1). В технических условиях для заявителей, предусмотренных пунктами 12.1 и 14(физ. лица до 15кВт, то есть наш случай) настоящих Правил, должны быть указаны:
а) точки присоединения, которые не могут располагаться далее 25 метров от границы участка, на котором располагаются (будут располагаться) присоединяемые объекты заявителя;
а(1)) максимальная мощность в соответствии с заявкой и ее распределение по каждой точке присоединения к объектам электросетевого хозяйства;
(пп. “а(1)” введен Постановлением Правительства РФ от 04.05.2012 N 442)
б) обоснованные требования к усилению существующей электрической сети в связи с присоединением новых мощностей (строительство новых линий электропередачи, подстанций, увеличение сечения проводов и кабелей, замена или увеличение мощности трансформаторов, расширение распределительных устройств, модернизация оборудования, реконструкция объектов электросетевого хозяйства, установка устройств регулирования напряжения для обеспечения надежности и качества электрической энергии), обязательные для исполнения сетевой организацией за счет ее средств;
в) требования к приборам учета электрической энергии (мощности), устройствам релейной защиты и устройствам, обеспечивающим контроль величины максимальной мощности;
г) распределение обязанностей между сторонами по исполнению технических условий (мероприятия по технологическому присоединению в пределах границ участка, на котором расположены энергопринимающие устройства заявителя, осуществляются заявителем, а мероприятия по технологическому присоединению до границы участка, на котором расположены энергопринимающие устройства заявителя, включая урегулирование отношений с иными лицами, осуществляются сетевой организацией).
(пп. “г” в ред. Постановления Правительства РФ от 24.09.2010 N 759)
(см. текст в предыдущей редакции).
Т.е. в технических условиях заявителей не должно быть требований к устройствам ограничивающим импульсные перенапряжения. Возможно если только притянуть “их за уши” как «устройства релейной защиты» коими такие устройства не являются.
Теперь мы с Вами знаем, как практические вопросы установки ограничителей так и юридические. Выбор всегда за Вами! Для себя я этот выбор уже сделал!
Не забывайте заходить на YOUTUBE и ставить палец вверх у видео про УЗИП,ОИН,ОПС.
Купить надежный щит учета очень просто – достаточно всего лишь отправить заявку по удобным для Вас каналам связи!
УЗИП — устройство защиты от импульсных перенапряжений
Назначение УЗИП
Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.
Другими словами УЗИПы выполняют следующие функции:
— Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями
— Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.
— Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)
УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.
Внешний вид УЗИП:
Принцип работы и устройство защиты УЗИП
Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.
Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.
Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:
Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.
Как это работает на практике разберем на примере следующей схемы:
На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.
В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.
Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).
На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.
Классификация УЗИП
Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:
УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.
УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.
УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.
Маркировка УЗИП — характеристики
Характеристики УЗИП:
- Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
- Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
- Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
- Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
- Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.
Схема подключения УЗИП
Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):
Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):
Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В
Принципиальные схемы подключения УЗИП выглядят следующим образом:
При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.