Токовые клещи своими руками

Токовые клещи

Что такое токовые клещи

Токовые клещи – это прибор, который замеряет силу тока без разрыва цепи.

Для того, чтобы замерять ток мультиметром, надо каждый раз разрывать провод, что не очень удобно на практике.

С помощью токовых клещей вопрос решается на раз и два.

Виды токовых клещей

Существуют два вида токовых клещей:

  1. Токовые клещи постоянного тока.
  2. Токовые клещи переменного тока.

Клещи, которые могут замерять силу тока постоянного напряжения сделаны на эффекте Холла – они в разы дороже. Но они также сочетают в себе и токовые клещи переменного напряжения.

Клещи, которые замеряют силу тока переменного напряжения сделаны на принципе трансфор матора, поэтому они дешевые. Они не могут измерять силу тока постоянного напряжения.

Внешне они друг от друга ничем не отличаются. Я рекомендую брать те, которые умеют измерять силу тока как постоянного, так и переменного напряжения.

Измерения токовыми клещами

Не так давно я себе заказал токовые клещи Mastech. До чего понравился прибор! В руке лежит как литой, да и переключать крутилку очень удобно большим пальчиком. Эти клещи умеют измерять силу тока как постоянного, так и переменного напряжения.

Нажимаем на курок, и губки раздвигаются)

Но на этом ништяки не заканчиваются. В комплекте идет полнофункциональный мультиметр с автоматическим подбором диапазонов.

Давайте проверим на работоспособность данный прибор и глянем на сколько он врет. Настало время опытов. Погнали!

Собираем схемку из лампочки на 12 В и и блока питания. На блоке питания тоже выставляем 12 Вольт.

Замеряем силу тока постоянного напряжения с помощью блока питания, потом замеряем силу тока с помощью китайского мультиметра, ну а потом замеряем силу тока токовыми клещами и сравним показания всех эти трех амперметров, встроенных в наши приборчики.

Итак, сначала у нас силу тока будет замерять сам лабораторный блок питания:

Лампочка потребляет 1,7 Ампер

Теперь меряем силу тока вот по такой схеме китайским мультиметром DT9202

Результат такой же, как и на блоке питания. 1,7 Ампер.

Замеряем силу тока постоянного напряжения

Ну а теперь в дело идут токовые клещи. Для начала выбираем диапазон измерения постоянного тока:

Потом убираем прибор подальше от разных проводов и других приборчиков, чтобы не было наводок. Далее нажимаем желтую кнопочку “SEL”, обнулив наши клещи

Вот теперь полный порядок, можно и замерять 😉

При замере силы тока клещами есть золотое правило: всегда захватываем только один провод!

Слева – правильный замер, справа – неправильный.

Хватаем проводок, чтобы он у нас был в полости губок. Расположите проводок по центру полости – так измерение будет чуточку точнее.

Получили 1,71 Ампер, что и требовалось доказать ;-).

Но почему значение с минусом, то есть “-1,71 Ампер”. В чем дело?

Если присмотреться, то можно увидеть стрелочку на одной из губок, которая показывает направление движения электрического тока.

Значит, в нашем опыте электрический ток течет в направлении, противоположном стрелочке, так как на дисплее высвечивается значение с минусом.

А давайте перевернем клещи:

Прибор показывает 1,73 Ампера. Ну вот, сейчас значок “минус” исчез. Значит ток течет по направлению стрелки. Погрешность измерения токовых клещей составила 30 миллиампер. Думаю, это вполне нормальная погрешность для такого прибора.

Замеряем силу тока переменного напряжения

Давайте теперь замеряем силу тока переменного напряжения. Для этого возьмем лампу накаливания на 220 Вольт

и подключим ее к сети 220 Вольт вот по такой схеме, чтобы замерить силу тока переменного напряжения

Ставим на мультиметре крутилку на значок

A, что означает измерение силы тока переменного напряжения и смотрим на показания

Мультиметр показывает 70 миллиампер.

Ну а теперь замеряем все это дело с помощью клещей, поставив крутилку на значок

A, не разрывая цепь:

Тоже 70 миллиампер 😉

Ну вроде бы все сходится). Одно нажатие на курок, и замер сделан! Не прибор, а чудо)

Маленькие хитрости при замерах

Есть также еще одна фишка для замера малой силы тока. Но для наглядности я покажу на большой силе тока. Используем всю ту же самую лампу накаливания на 12 вольт и лабораторный блок питания с выставленным напряжением в 12 Вольт.

Делаем первый замер:

Токовые клещи показали 1,75 Ампер. Видать лампа еще на нагрелась, поэтому выдало чуть больше, чем в прошлом опыте.

А теперь знаете что? Давайте сложим замеряемый проводок бубликом в два витка и снова сделаем замеры:

На дисплее высветилось значение 3,54 Ампера.

Добавим еще один виток. Итого стало 3 витка:

Прибор нам показал 5,31 Ампера.

Ну и напоследок добавим еще один виток. Итого стало 4 витка:

Прибор нам показал 7,12 Ампер.

Читать еще:  Tn s заземление

Не заметили никакую закономерность? А она до боли простая:

Общий ампераж = количество витков помноженный на ампераж одного витка.

То есть если у нас 4 витка показывает 7,12 Ампер, то 7,12/4=1,78 Ампер

Если 3 витка показывает 5,31 Ампер, то 5,31/3=1,77 Ампер

И для двух витков, получаем 3,54/2=1,77 Ампер.

То есть по сути, чтобы точнее измерить малые токи, мы наматываем как можно больше витков, замеряем, а потом делим значение на токовых клещах на количество витков.

Где купить токовые клещи

Как я уже сказал, их можно без труда найти на Алиэкспрессе.

Заключение

В заключении хотелось бы сказать, что токовые клещи мне очень понравились, не только потому что они могут замерять силу тока, но и содержат в себе полноценный мультиметр с автоматическим определением диапазона. Вот на них документац ия на русском языке. Ну что могу еще сказать? Микроамперы и миллиамперы особо не замеряешь. Так что данный класс прибора можно отнести к промышленной электронике, где “гуляют” большие токи. Но в моей домашней лаборатории этот прибор все равно найдет достойное место.

Клещи-приставка AC/DC Holdpeak HP-605A. для больших токов

  • Цена: $20.29 (куплено за $19.42)
  • Перейти в магазин

Тóковые клещи позволяют производить измерение тока бесконтактным способом — просто обхватив этот провод. Клещи для переменного тока делаются как правило на основе тóкового трансформатора, выпускаются уже очень давно и стоят копейки. Клещи для постоянного тока — имеют в своей основе линейные датчик(и) холла, и стали доступны по цене не так давно. В целом, клещи можно поделить на клещи для переменки и клещи для постоянки, а по конструкции — на автономные и приставки. Из автономных недорогих AC/DC могу назвать ut210e, ms2108A, а из приставок — чуть подороже appa 32, hantek cc65/cc650, ну и вот «новый игрок» в нижнем ценовом диапазоне — Holdpeak.

Вообще, изначально клещи предназначены в пару к мультиметру HP890CN — сам есть соответствующее положение на селекторе. Но в принципе могут работать с любым другим тестером или даже осциллографом, потому что выдают напряжение прямо пропорциональное измеряемому току — 1мВ соответствует 1А.

Клещи имеют размеры 175х80мм (без боковой кнопки, открывающей «пасть»), вес около 300г, длина провода 70см.



В комплекте есть бумажка, назвать инструкцией которую язык не поворачивается. Там написано примерно следующее: подключите клещи к тестеру, включите, выберите на тестере режим «клещи», переключите клещи и тестер в соответствующий AC/DC режим, нажмите на тестере кнопку REL — и измеряйте. Никаких цифр, погрешностей, пределов — ничего. Впрочем, инструкция от HP890cn обещает 2.5%/3% +5 для DC и AC соответственно.

На передней панели кнопка питания, светодиод индицирующий включенное состояние и кнопка AC/DC. Забегая вперед, скажу что отличие AC от DC — во включенном последовательно конденсаторе, ну и подстроечники для AC и DC — разные.

Питаются от «кроны», потребляемый ток 4.4мА

Выходной сигнал — 1мВ=1А

Внутренний мир прост и незатейлив — LDO 7550 на 5В, преобразователь из +5В в -5В 7660 и операционный усилитель TL062


с обратной стороны платы — три подстроечных резисторы, кнопки и светодиод питания.

схема (если я ничего не напутал):

Названия микросхем, кнопок, разъемов — условные (скажем, вместо 7550 нарисовал 78L05, разъемы взяты тупо по числу контактов и т.д.). Конденсаторы не отпаивал и не прозванивал, для резисторов указаны надписи на них и их перевод в реальное значение (ибо для 0603 с 1% точности уже обозначение не цифра-цифра-множитель, а целая таблица)

Если я правильно понимаю (а с высокой вероятностью я таки ошибаюсь) — VR1 задаёт начальное смещение, то есть регулирует ноль, а VR2 и VR3 — калибровка по постоянке и переменке соответственно.

Режим AC отличается кроме другой выходной цепи и потенциометра — включенным последовательно конденсатором. Нафига это нужно — как по мне тайна великая есть. Видимо, чтобы отсечь постоянное смещение, которое неминуемо в клещах на датчиках холла. Чем это будет отличаться от переключения тестера в режим AC — уж я и не знаю. Как по мне — лучше бы подстроечник для этой цели ввели, оперативно 0 выставлять на постоянке.

Теперь измерения. Как я уже писал в заголовке — клещи рассчитаны на большие токи. Поэтому на малых токах точность будет никакая, но тем не менее попробуем проверить.

постоянка:

переменка:

Как видим, если на постоянке точность еще куда ни шло, то на переменке ну совсем не в дугу. впрочем, измерение переменных токов меня волнуют мало, а таких высоких — не волнуют вовсе, так что лично для меня это проблемой не является, но если я правильно понимаю, можно при желании подстроить (?) при помощи VR2 и VR3, что я и сделал для постоянного тока, хоть и не сфоткал. Но получилось не более +-0.1А с эталонным тестером, на вышеприведенных же токах, что я считаю вполне себе неплохим результатом. Ну не рассчитаны они на такие токи. Им нужны десятки и сотни ампер — там они покажут точнее и «раскроются в полной мере».

Читать еще:  Фаза в электротехнике

Теперь — маленькая доработка. Так как я планировал использовать данные клещи для диагностики, в частности — измерения стартерного тока, то я решил заменить провод на разъем. Ну и сразу скажу, что в этой роли пока не пробовал — не было возможности, времени и желания. 😉

Для этого я отпаял провод, припаял к нему разъем «тюльпан»-папу, а в клещи поставил соответствующее гнездо. Для установки гнезда я просверлил корпус сверлом 10мм, после чего взял пластиковую пластинку размерами примерно 10х20х1.5мм, просверлился в ней диаметром 6мм, прикрутил к ней гнездо и вставил в корпус — между корпусом и бывшим зажимом провода:






Как по мне — стало не хуже, к тому же появилась возможность подключения «штатным» кабелем. Можно, естественно, поставить разъем BNC, ну либо воткнуть в этот разъем переходник. Высоких частот тут не будет, так что необходимости в BNC разъемах как-то и нету.

После этой доработки можно подключиться к осциллографу. Для этого я собрал на каком-то полевике ключик, который запустил от внешнего генератора и нагрузил на мощный резистор. Понятно, что всё это несерьёзно, ну да что есть — то есть:

Как видим, сигнал достаточно шумный, что вообще говоря неудивительно — я вообще как-то слабо понимаю использование преобразователей типа 7660 в схемах с микровольтными/милливольтными сигналами. Полюс полное отсутствие экранирования, так что и внешние наводки исключать никак нельзя.
По частоте — тоже ничего выдающегося.

Для сравнения — сигнал с ut210e в режиме 20А:

Амплитуда выше, сигнал чище.

Честно говоря, впечатления неоднозначные. Так и хочется написать «как за свои деньги. ». То есть да, это самая дешманская модель на рынке. «Из коробки» достаточно сильно врёт, что, впрочем, скорее всего особенности конкретного экземпляра, да и вроде как поддаётся подстройке.

Хотелось бы видеть хоть минимальное экранирование, также хотелось бы переключение пределов 600/60А — но тут в принципе понятно что переключения такого нет совершенно осознанно, оно ж идёт «комплектом» к тестеру, где в режиме клещей предел 600А. С другой стороны можно было на тестере сделать 60/600А — но не сделали. В результате имеем низкую цену — но и низкую точность «прицепом», а также не сильно красивый сигнал в плане помех.

Подумываю натыкать пару дросселей по питанию, а также раздумываю над введением режима 60А (точнее, до 60 не дотянуть, где-то 40 наверно будет максимум), и тут мне хотелось бы спросить совета у более грамотных схемотехников. потому что как по мне, то самый «незамутнённый» способ — впереть тупо еще один ОУ на выходе с коэффициентом усиления 10 и не запариваться 😉 Как вариант — изменить коэффициент усиления имеющегося ОУ, но что-то у меня с наскоку не прокатило — вероятно нужно еще ноль будет точнее выставлять в этом случае. Короче говоря, с радостью выслушаю в комментах любые советы кроме выкинуть. 😉

К покупке рекомендую, только если вам нужно проверять десятки-сотни ампер, и при этом цена важнее качества, а «руки не для скуки» и вы готовы тратить время на доработки и калибровки клещей за 20 баксов.

Токовые клещи

Что такое токовые клещи

Токовые клещи – это прибор, который замеряет силу тока без разрыва цепи.

Для того, чтобы замерять ток мультиметром, надо каждый раз разрывать провод, что не очень удобно на практике.

С помощью токовых клещей вопрос решается на раз и два.

Виды токовых клещей

Существуют два вида токовых клещей:

  1. Токовые клещи постоянного тока.
  2. Токовые клещи переменного тока.

Клещи, которые могут замерять силу тока постоянного напряжения сделаны на эффекте Холла – они в разы дороже. Но они также сочетают в себе и токовые клещи переменного напряжения.

Клещи, которые замеряют силу тока переменного напряжения сделаны на принципе трансфор матора, поэтому они дешевые. Они не могут измерять силу тока постоянного напряжения.

Внешне они друг от друга ничем не отличаются. Я рекомендую брать те, которые умеют измерять силу тока как постоянного, так и переменного напряжения.

Измерения токовыми клещами

Не так давно я себе заказал токовые клещи Mastech. До чего понравился прибор! В руке лежит как литой, да и переключать крутилку очень удобно большим пальчиком. Эти клещи умеют измерять силу тока как постоянного, так и переменного напряжения.

Читать еще:  Каким цветом обозначается фаза

Нажимаем на курок, и губки раздвигаются)

Но на этом ништяки не заканчиваются. В комплекте идет полнофункциональный мультиметр с автоматическим подбором диапазонов.

Давайте проверим на работоспособность данный прибор и глянем на сколько он врет. Настало время опытов. Погнали!

Собираем схемку из лампочки на 12 В и и блока питания. На блоке питания тоже выставляем 12 Вольт.

Замеряем силу тока постоянного напряжения с помощью блока питания, потом замеряем силу тока с помощью китайского мультиметра, ну а потом замеряем силу тока токовыми клещами и сравним показания всех эти трех амперметров, встроенных в наши приборчики.

Итак, сначала у нас силу тока будет замерять сам лабораторный блок питания:

Лампочка потребляет 1,7 Ампер

Теперь меряем силу тока вот по такой схеме китайским мультиметром DT9202

Результат такой же, как и на блоке питания. 1,7 Ампер.

Замеряем силу тока постоянного напряжения

Ну а теперь в дело идут токовые клещи. Для начала выбираем диапазон измерения постоянного тока:

Потом убираем прибор подальше от разных проводов и других приборчиков, чтобы не было наводок. Далее нажимаем желтую кнопочку “SEL”, обнулив наши клещи

Вот теперь полный порядок, можно и замерять 😉

При замере силы тока клещами есть золотое правило: всегда захватываем только один провод!

Слева – правильный замер, справа – неправильный.

Хватаем проводок, чтобы он у нас был в полости губок. Расположите проводок по центру полости – так измерение будет чуточку точнее.

Получили 1,71 Ампер, что и требовалось доказать ;-).

Но почему значение с минусом, то есть “-1,71 Ампер”. В чем дело?

Если присмотреться, то можно увидеть стрелочку на одной из губок, которая показывает направление движения электрического тока.

Значит, в нашем опыте электрический ток течет в направлении, противоположном стрелочке, так как на дисплее высвечивается значение с минусом.

А давайте перевернем клещи:

Прибор показывает 1,73 Ампера. Ну вот, сейчас значок “минус” исчез. Значит ток течет по направлению стрелки. Погрешность измерения токовых клещей составила 30 миллиампер. Думаю, это вполне нормальная погрешность для такого прибора.

Замеряем силу тока переменного напряжения

Давайте теперь замеряем силу тока переменного напряжения. Для этого возьмем лампу накаливания на 220 Вольт

и подключим ее к сети 220 Вольт вот по такой схеме, чтобы замерить силу тока переменного напряжения

Ставим на мультиметре крутилку на значок

A, что означает измерение силы тока переменного напряжения и смотрим на показания

Мультиметр показывает 70 миллиампер.

Ну а теперь замеряем все это дело с помощью клещей, поставив крутилку на значок

A, не разрывая цепь:

Тоже 70 миллиампер 😉

Ну вроде бы все сходится). Одно нажатие на курок, и замер сделан! Не прибор, а чудо)

Маленькие хитрости при замерах

Есть также еще одна фишка для замера малой силы тока. Но для наглядности я покажу на большой силе тока. Используем всю ту же самую лампу накаливания на 12 вольт и лабораторный блок питания с выставленным напряжением в 12 Вольт.

Делаем первый замер:

Токовые клещи показали 1,75 Ампер. Видать лампа еще на нагрелась, поэтому выдало чуть больше, чем в прошлом опыте.

А теперь знаете что? Давайте сложим замеряемый проводок бубликом в два витка и снова сделаем замеры:

На дисплее высветилось значение 3,54 Ампера.

Добавим еще один виток. Итого стало 3 витка:

Прибор нам показал 5,31 Ампера.

Ну и напоследок добавим еще один виток. Итого стало 4 витка:

Прибор нам показал 7,12 Ампер.

Не заметили никакую закономерность? А она до боли простая:

Общий ампераж = количество витков помноженный на ампераж одного витка.

То есть если у нас 4 витка показывает 7,12 Ампер, то 7,12/4=1,78 Ампер

Если 3 витка показывает 5,31 Ампер, то 5,31/3=1,77 Ампер

И для двух витков, получаем 3,54/2=1,77 Ампер.

То есть по сути, чтобы точнее измерить малые токи, мы наматываем как можно больше витков, замеряем, а потом делим значение на токовых клещах на количество витков.

Где купить токовые клещи

Как я уже сказал, их можно без труда найти на Алиэкспрессе.

Заключение

В заключении хотелось бы сказать, что токовые клещи мне очень понравились, не только потому что они могут замерять силу тока, но и содержат в себе полноценный мультиметр с автоматическим определением диапазона. Вот на них документац ия на русском языке. Ну что могу еще сказать? Микроамперы и миллиамперы особо не замеряешь. Так что данный класс прибора можно отнести к промышленной электронике, где “гуляют” большие токи. Но в моей домашней лаборатории этот прибор все равно найдет достойное место.

Понравилась статья? Поделиться с друзьями: